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Processing Twitter Data

Visualization (Exploratory Data Analysis)

Find more at :
http:/ /www.slideshare.net /kristw /kristw-hackshackers



Twitter Data Visualization

Visualization is for story telling, exploratory data
analysis and result illustration

Extracts from twitter data

User Who?

Text (+media) What?

Geo-location Where?

Time When?

Generator How?

Amount How much? (Aggregate Data)

To visualize, combine these extracts together



User + Time
=

o An interactive timeline based on when your friends
started using Twitter
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https: / /blog.twitter.com /2014 /visualizing-your-twitter-conversations



Time + Amount
e

o1 A graph of the Tweet activity on the evening of
Sunday May 1, 2011.

Tweets Per Second: Evening of May 1, 2011
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Geo + Amount

o Twitter Heat Map of “f*ck you” and “Good Morning”

. Norn
Dakota

Verakb g

http:/ /www.huffingtonpost.com /2012 /08 /20 /twitter-heatmap-good-morning-fck-
you_n_1811065.html



User + Text
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7 While Twitter brings many users together, we
typically connect with like-minded souls online
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User + Amount
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Twitter is Most Popular Platform Among Global Companies

Percent of Fortune Global 100 Companies with...

Nearly Half of
Companies Have
Google+ Accounts

P

ol And a Quarter of
Companies Have

YoullMita Pinterest Accounts
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Text + Amount

oo f
- Word Cloud and Word Tree
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Geo + Text
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0 Real-time Tweet Maps
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Text + Time + Amount

1 UEFA Champion League
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Geo + Time + Amount

e
1 Tweet Pattern
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Text + Time + Geo + Amount

14|
1 State of The Union 2014

“ oy

#healthcare

#fairness

businesses to stay focused on innovation, not costly, needless litigation.

2 ] a2 c 2 Real-time engagement distribution on
Now, one of the biggest factors in bringing more jobs back is our Twitter for th?s garagraph

e

commitment to American energy. The all-of-the-above energy strategy [
announced a few years ago is working, and today, America is closer to

energy independence than we've been in decades.

One of the reasons why is natural gas — if extracted safely, it's the bridge
fuel that can power our economy with less of the carbon pollution that

causes climate change. Businesses plan to invest almost $100 billion in

new factories that use natural gas. I'll cut red tape to help states get those Low Engagement High Engagement
factories built, and this Congress can help by putting people to work Map for #energy
buildine fueline stations that shift more cars and trucks from foreien il . h

udaet

http:/ /twitter.github.io /interactive /sotu2014 /



- Processing Twitter Data

In-depth Analysis

Find more in :
- Social Media Mining An Infroduction
By Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu

-Twitter Data Analytics
By Shamanth Kumar, Fred Morstatter, and Huan Liu



Social Media Mining (1)

There are three groups of questions we want to
answer

Group1: General Activities

Who are the most important people in a social
network?

How do people befriend others?

How can we find interesting patterns in user-generated
content?



Social Media Mining (2)

Group2: Communities and Interactions
How can we identify communities in a social network?

When someone posts an interesting article on a social
network, how far can the article be transmitted in that
network?

Group3: Real-world problems

How can we measure the influence of individuals in a
social network?

How can we recommend content or friends to
individuals online?

How can we analyze the behavior of individuals online?



Twitter Analysis

Text Measures
Trending Topics
Sentimental Analysis

Network Measures

User Influence

User Behavior



Trending Topics

1 Count occurrences of Specific Words

http:/ /yearinreview.twitter.com /en /hottopics.html



Latent Dirichlet Allocation (LDA)

Every topic in LDA is a collection of words

Each topic contains all of the words in the corpus with a
probability of the word belonging to that topic.

For example,

Sports 40% “basketball”, 35% “football”, 15% “baseball”,
ey 0.02% “congress”, and 0.01% “Obama”
Politics 35% “congress”, 30% “Obama”, ..., 1% “football”, 0.1%

“baseball”, 0.1% “basketball”

LDA finds the most probable words for a topic,
associating each topic with a theme is left to the user



Preprocessing before LDA

In order to using MALLET library in JAVA for LDA,
we have to preprocess data with these five steps

0. Raw Data No more media blackout hiding #OCCUPYWALLSTREET! :)

1. Lowercase no more media blackout hiding #occupywallstreet! :)
2. Tokenize [no, more, media, blackout, hiding, #occupywallstreet]
3. Stopword [no, media, blackout, hiding, #occupywallstreet]
Removal

4. Stemming [no, media, blackout, hide, #occupywallstreet]

5. Vectorization g vector that contains a sequence of numbers for each
word in the vocabulary



Typology of Trending Topics !

News

Ongoing events: real-time information sharing

E.g. A soccer game, A keynote presentation by Apple
Memes: triggered by viral ideas initiated by either
an individual or an organization

E.g. Ice Bucket Challenge

Commemoratives: the commemoration of certain
person or event that is being remembered in a
given day

E.g. New Year, Father Day, PrincessDiana

[1] Arkaitz Zubiaga et.al., Real-Time Classification of Twitter Trends, Journal of
the American Society for Information Science and Technology 2013



Sentimental Analysis

“Sentiment analysis” seeks to automatically
associate a piece of text with a “sentiment score”, a
positive or negative emotional score

Using natural language processing, text analysis
and computational linguistics to identify and extract
subjective information in source materials.



Sentimental Analysis Approaches

Existing approaches to sentiment analysis can be
grouped into four main categories !

Keyword spotting: based on the presence of unambiguous
affect words such as happy, sad, afraid, and bored

Lexical affinity: not only detects obvious affect words, it also
assigns arbitrary words a probable “affinity” to particular
emotions

Statistical methods: leverage on elements from machine
learning such as latent semantic analysis, support vector
machines, "bag of words" and Semantic Orientation

Concept-level techniques: leverage on elements from
knowledge representation such as ontologies and semantic
networks

[1] http:/ /en.wikipedia.org /wiki/Sentiment_analysis



Dictionary-based Approach

Sentiment analysis framework using dictionary-
based approach

There are words together with its sentimental score in
the specific dictionary

Apply Porter stemmer to dictionary terms and tweets
Compute Value [1,9] and then minus 5
Words not contained in the dictionary —> neutral

Total Score = Sum of the score from each word in each
metric



Naive Bayes Approach (1)

Sentiment analysis framework using Naive Bayes
Classification

Enumerating each Tweet in the dataset
Building a lexicon from the Tweets that use an emoticon

Calculating a sentiment score for each Tweet that does
not have an emoticon



Naive Bayes Approach (2)
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Sentimental Scale Visualization
B

o A graph showing sentimental tendency of tweets
containing a word “tea”
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http: / /www.csc.ncsu.edu /faculty /healey /tweet_viz /tweet_app/



Sentiment + Time

20
Studying Moods Through Twitter

A textual analysis of more than 500 million Twitter messages found people
around the world tend to express more positive emotions in the morning
and evening, and are most positive on weekends. The recurring daily
pattern suggests moods are influenced by sleep and circadian rhythms,

A

More
positive
words in

pasts

Sunday

Fewer
positive
words

| Weekdays
| | | | | |
Midnight 6am. 9am. Noon 6 p.m. 11 p.m.

Source: Science THE NEW YORE TRMES

http:/ /www.nytimes.com /2011 /09 /30 /science /30twitter.html2_r=0



Tie Strength in Twitter

I I ———————

follows
Weak Tie o o

follows

“Semi-Strong " Tie

@replies

follows

Strong Tie

follows

@replies

Strongest Tie

@replies

https: / /twitterresearcher.wordpress.com /2012 /05 /24 /tie-strength-in-twitter /



Networks from Twitter Data

Interest Graph friend — follower
(Twitter Social Graph)
Conversation Graph mention (reply)

Retweet Graph retweet



Twitter Social Graph

o Try to find independent communities within a graph;

assigh modularity score based on connections from
individual nodes to “hub” nodes (gephi)
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Conversation Graph
B

1 From 3000 tweets
for 4 rappers
(Drake, Kendrick
Lamar, J Cole, and
Big Sean)

Kendrick Lamar

71 Created By
Achal Soni (Gephi)



Retweet Graph

One can only identify the original source of the

information and not the intermediate users along
the information propagation path.

Peter

|
a 7N

Allce Bob

(a) Actual propagation path (b) Path extracted from Twitter API



Network Measures

Centrality
How important a node is within a network
User Influence
Transitivity and Reciprocity
How links (edges) are formed in a social graph
Link Prediction
Similarity (Structural, Regular)

Compute similarity between two nodes in a network

Community Analysis, Behavior Prediction



Degree Centrality

1 Count the number of links attached to the node

01 The key question was “how many people retweeted
this node?”
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Eigenvalue Centrality

11 Eigenvector Centrality builds upon this to ask “how
important are these retweeterse”

¢ | ®
o—ﬁ — @
¢ N



Centrality Measures

Degree Centrality
Eigenvector Centrality
Katz Centrality
PageRank
Betweenness Centrality

Closeness Centrality

Group Centrality



Collaborative Filtering
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Memory-based Approach

_ 40 |
1 E. g. Movie Rd’rings User-based Filtering
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Memory-based Approach
B

o1 A prediction is normally based on the weighted
average of the recommendations of several people.

Find Weighted

Similarity Prediction




- Tools for analysis

Find more at :
http:/ /en.wikipedia.org /wiki/Social_network_analysis_software




Mining Twitter with R (1)

Package “twitteR” (R based Twitter client) provides
an interface to the Twitter web API

decode short_url
favorites

friendships
getCurRatelLimitinfo
getTrends
registerTwitterOAuth

twlistToDF

A function to decode shortened URLs

A function to get favorite tweets

A function to detail relations between yourself & other users
A function to retrieve current rate limit information

Functions to view Twitter trends

Register OAuth credentials to twitter R session

A function to convert twitteR lists to data.frames

http:/ /cran.r-project.org /web /packages/twitteR /twitteR.pdf



Mining Twitter with R (2)
T

1 The examples of other useful packages for text
mining using R

library (tm) # Framework for tezt mining.

library(SnowballC) # Provides wordStem() for stemming.

library (qdap) # Quantilatiive discourse analysis of transcripis.
library(gdapDictionaries)

library (dplyr) # Data preparation and pipes J>X.

library (RColorBrewer) # Generate palette of colours for plots.
library(ggplot2) # Plot word frequencies.

library(scales) # Include commas in numbers.

library (Rgraphviz) # Correlation plots.

http:/ /onepager.togaware.com /TextMiningO.pdf



NodeXL (1)

Network Overview Discovery Exploration for Excel

A free and open-source network analysis and
visualization software package for Microsoft Excel

2007/2010

Intended for users with little or no programming
experience to allow them to collect, analyze, and
visualize a variety of networks



NodeXL (2)
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Gephi (https:/ /gephi.github.io /)

An open-source network analysis and visualization

software package written in Java on the NetBeans
platform

See video: http://vimeo.com /9726202




Graphviz (www.graphviz.org)

An open source graph visualization software
A simple text language > Diagrams

Output formats e.g. images and SVG for web
pages; PDF or Postscript for inclusion in other

documents; or display in an interactive graph
browser

Useful features for concrete diagrams, such as

options for colors, fonts, tabular node layouts, line
styles, hyperlinks, and custom shapes.



Graphviz (www.graphviz.org)




- Interesting sources
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Analytics.twitter.com
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Analytics.twitter.com
s

Tweet Details X

2. Closeness

I'm not greot al talking about
what I'm feeling all the time.

PP BuzzFeed &
g ©BuzzFeed
23 Words That Mean Something Totally Different
When You're In A Long-Term Relationship
bzfd.it/ 1iFkiGf

W Foliow

9:45 PM - 17 Jun 2014

Impressions 128,173
i € B X Embedded media clicks 6,998
Link clicks 4,004
Detail expands 772
Favorites 186
Retweets 93
User profile clicks 75

https:/ /blog.twitter.com /2014 /new-tweet-activity-dashboard-offers-richer-analytics



Blog.twitter.com
B

The Official Twitter Blog

Keeping you connected to everything from Twitter.

Big night for #SOTU on Twitter

Wednesday, January 21, 2015 | By Bridget Coyne (@bcoyne), Government & Elections Team 01/21/2015 - 04:25
Tags: civic, live events, politics, and Twitter data

A look back at the real-time State of the Union conversation. Read more...

#NFL Conference Championships recap

Tuesday, January 20, 2015 | By Brian Poliakoff (@brianpoliakoff), Sports Communications Manager 01/20/2015 - 19:04
Tags: live events and sports

How the #NFL conference championships played out on Twitter. Read more...



Blog.twitter.com

The Official Twitter Blog

Your source for company news, stories and updates.

Media Advertising Engineering Developers
Tracking how Twitter is Your official source for Information from Connecting the Twitter
usedin TV, sports, Twitter Ads product Twitter's engineering developer community
music, government, updates, tips, events team about our through best practices

news and more. and success stories. technology, tools and and tutorials.
sernvices.




Interactive.twitter.com
N
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Interactive.twitter.com

W The all-time top-tweeted Michael Jackson songs
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Analyzing Big Data With Twitter

Special course in Fall 2012 from UC Berkeley
School of Informatics by Marti Hearst

Cooperating with Twitter Inc.

Taught Topics
Twitter Philosophy; Twitter Software Ecosystem
Using Hadoop and Pig at Twitter
The Twitter API
Trend Detection in Twitter’s Streams
Real-time Twitter Search
Correlating Twitter Data with Other Data
Graph Algorithms for the Twitter Social



Analyzing Big Data With Twitter

Taught Topics (Cont.)
GraphlLab: Big Learning with Graphs
Large-scale Anomaly Detection at Twitter
Recommendation Algorithms at Twitter
Security at Twitter
Information Diffusion and Outbreak Detection at Twitter
Etc.

Find more on the course webpage

http:/ /blogs.ischool.berkeley.edu/i290-abdt-s12/

Youtube Playlist of the lectures
https: / /www.youtube.com /playlist2list=PLESC1256A28C1487F



Bibliography of Research on Twitter &
Microblogging

http: / /www.danah.org /researchBibs /twitter.php

Bibliography of Research on Twitter & Microblogging
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(conference paper)
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